Học máy và các kỹ năng để trở thành nhà khoa học dữ liệu
Thứ bảy, 14/09/2019

Sự phát triển của trí tuệ nhân tạo những năm gần đây ảnh hưởng mạnh tới nhiều lĩnh vực, gắn liền với nó là thuật ngữ công nghệ machine learning.
Học máy -Machine Learning
Sự phát triển của trí tuệ nhân tạo những năm gần đây ảnh hưởng mạnh tới nhiều lĩnh vực, gắn liền với nó là thuật ngữ công nghệ machine learning.
Học máy là gì, vì sao các nhà khoa học lại đầu tư phát triển công nghệ này? Thạc sĩ Khoa học máy tính Trần Quốc Tuấn - Mentor Đại học trực tuyến FUNiX phân tích rõ hơn về công nghệ này.
Thuở còn đi học, đa phần chúng ta thường sợ nhất là các môn học thuộc lòng và không hiểu vì sao trí nhớ của mình chỉ tồn tại trong đầu đúng từ tối hôm trước đến hết tiết kiểm tra của ngày hôm sau.
Rõ ràng, luôn có sự phân biệt hiện tượng học vẹt và học thực sự. Khi bạn nhớ mà không hiểu bản chất, đó là học vẹt. Nếu bên cạnh việc nhớ, bạn hiểu và có thể áp dụng các kiến thức đó trong những công việc, bài học khác, đó là học thật.
Máy học cũng tương tự. Máy tính nếu chỉ lưu trữ dữ liệu mà không thể xử lý, nó chỉ là bộ nhớ thông thường. Nhưng nếu bên cạnh việc lưu trữ, máy có thể khai phá và xử lý dữ liệu, tự đưa ra quyết định, nó sẽ được gọi là máy học.
Cơ chế của học máy
Machine Learning là một dạng chương trình mà bạn có thể đưa bất kỳ dữ liệu đầu vào (số, chữ, âm thanh, ký hiệu...) vào đó, và chương trình sẽ suy luận kết quả đầu ra.
Với bất kỳ dữ liệu đầu vào nào, Machine Learning đều có thể đưa ra kết quả dự báo và độ chính xác của dự báo phụ thuộc vào lượng dữ liệu đầu vào. Trong Machine Learning, tập dữ liệu đầu vào thường được gọi với các tên như tập huấn luyện, tập dữ liệu mẫu, tập quan sát. Số lượng dữ liệu của tập huấn luyện càng lớn thì kết quả dự báo của Machine Learning càng chính xác.
Sau dữ liệu, thuật toán chính là công cụ để học máy thực hiện việc phân tích dữ liệu và suy luận ra kết quả. Đây chính là những "người thầy" của máy.
Việc lựa chọn một giải thuật phù hợp cho một bài toán học máy là bước khá quan trọng. Lựa chọn thuật toán phụ thuộc vào bản thân của tập dữ liệu. Không phải cứ thuật toán phức tạp là hiệu quả sẽ cao. Đối với những tập dữ liệu đơn giản thì không cần phải dạy bằng một thuật toán quá phức tạp. Mỗi thuật toán đều có ưu và nhược điểm riêng đối với từng tập dữ liệu. Việc áp dụng và phát huy như thế nào là tùy theo nhận định của con người.
Ví dụ, bạn có thông tin về số lượng giày của một thương hiệu nào đó được bán ra thị trường quốc tế từ tháng 1 tới tháng 11/2018 và bạn muốn dự đoán nhu cầu thị trường thế giới trong tháng 12. Điều này hoàn toàn khả thi nhờ Machine Learning. Tập dữ liệu đầu vào sẽ được nhập vào máy tính và chạy trên một thuật toán nhất định. Kết quả đầu ra sẽ là thông tin mà bạn cần. Quy luật của thị trường được máy tính tự tìm ra và các con số dự báo ra đời.

Máy học Machine Learning.
Ứng dụng của học máy
Học máy là sự giao thoa giữa thống kê cổ điển với khoa học máy tính. Một mục tiêu quan trọng của ngành học máy là làm sao để máy tính thông minh hơn, có khả năng học hỏi và hình thành tri thức một cách tự động từ kinh nghiệm và trở nên hữu ích hơn trong giao tiếp với con người.
Đây cũng là một trong những mục tiêu ban đầu của ngành học máy, vào những năm 1950 trong thế kỷ trước. Giờ đây, sau nhiều năm phát triển và đặc biệt trong quãng 5 - 10 năm trở lại đây, học máy đã được ứng dụng trong rất nhiều lĩnh vực của xã hội.
Học máy có một vai trò quan trọng với mọi Chính phủ trên toàn cầu, trong việc phân tích và dự báo dữ liệu thông tin quốc gia, từ quốc phòng - an ninh tới y tế, tài chính, kinh doanh...
Dữ liệu luôn được thu thập liên tục bằng rất nhiều phương tiện trong từng giây. Những bộ dữ liệu quý giá này sẽ được xử lý bởi hệ thống học máy. Thông tin sau khi xử lý, phân tích chính xác và đưa ra những chỉ báo hiệu quả sẽ mang lại rất nhiều giá trị và lợi thế cho quốc gia đó.
Ví dụ, các dữ liệu tài chính xử lý qua học máy sẽ giúp con người dự báo các dữ liệu tương lai và từ đó, nắm được quy luật vận hành của thị trường. Ô tô tự lái thu thập thông tin trên đường phố từ camera vận hành và hệ thống tín hiệu giao thông, từ đó ra quyết định nên đi hay dừng, rẽ hay lùi để đưa người đến địa điểm an toàn trong thời gian ngắn nhất...
Có thể nói, trong tương lai, học máy sẽ phủ khắp mọi lĩnh vực trong cuộc sống, miễn là nơi đó có dữ liệu. Nhờ có học máy, thời tiết sẽ được dự báo chính xác hơn. Trong y tế, thông tin bệnh nhân được quản lý sâu tới nguồn gene và hỗ trợ bác sĩ lên phác đồ điều trị phù hợp. Các kênh đầu tư sẽ có thêm nhiều gợi ý chính xác hơn. "Biết đâu khi sẽ chẳng còn xa nữa, ô tô tự lái có thể thong thả chạy quanh hồ Gươm và dừng lại ở Lý Thái Tổ...", Mentor Trần Quốc Tuấn nói.
Tuy nhiên, để máy tính học tốt, nó phải có khả năng xử lý dữ liệu tốt hơn: dữ liệu đến từ việc giao tiếp với người và giao tiếp giữa những loại thiết bị máy móc với nhau. Khi máy giao tiếp với người, nó phải tiếp nhận được dữ liệu mà người cung cấp cho máy, hiểu những thông tin mà con người truyền đạt cho nó.
Cái cốt lõi của học máy cũng chính là vấn đề suy diễn từ dữ liệu. So với thống kê cổ điển, điều mới là máy phải thực hiện một cách hiệu quả các phép suy diễn và học tập từ dữ liệu bằng các thuật toán hiệu quả và cơ sở quản lý dữ liệu đồ sộ của máy tính. Do đó học máy cũng được xem là một trong những lĩnh vực tiên phong của thống kê hiện đại nói riêng và khao học dữ liệu nói chung.
Với sự phát triển của dữ liệu lớn và các thuật toán xử lý, khi khai thác hết tiềm năng của học máy, con người sẽ có sự hỗ trợ hiệu quả từ máy móc để phân tích và xử lý những thông tin có thể là quá tải với bộ não của con người.
Học máy là sự giao thoa giữa thống kê cổ điển với khoa học máy tính. Một mục tiêu quan trọng của ngành học máy là làm sao để máy tính thông minh hơn, có khả năng học hỏi và hình thành tri thức một cách tự động từ kinh nghiệm và trở nên hữu ích hơn trong giao tiếp với con người.
Đây cũng là một trong những mục tiêu ban đầu của ngành học máy, vào những năm 1950 trong thế kỷ trước. Giờ đây, sau nhiều năm phát triển và đặc biệt trong quãng 5 - 10 năm trở lại đây, học máy đã được ứng dụng trong rất nhiều lĩnh vực của xã hội.
Học máy có một vai trò quan trọng với mọi Chính phủ trên toàn cầu, trong việc phân tích và dự báo dữ liệu thông tin quốc gia, từ quốc phòng - an ninh tới y tế, tài chính, kinh doanh...
Dữ liệu luôn được thu thập liên tục bằng rất nhiều phương tiện trong từng giây. Những bộ dữ liệu quý giá này sẽ được xử lý bởi hệ thống học máy. Thông tin sau khi xử lý, phân tích chính xác và đưa ra những chỉ báo hiệu quả sẽ mang lại rất nhiều giá trị và lợi thế cho quốc gia đó.
Ví dụ, các dữ liệu tài chính xử lý qua học máy sẽ giúp con người dự báo các dữ liệu tương lai và từ đó, nắm được quy luật vận hành của thị trường. Ô tô tự lái thu thập thông tin trên đường phố từ camera vận hành và hệ thống tín hiệu giao thông, từ đó ra quyết định nên đi hay dừng, rẽ hay lùi để đưa người đến địa điểm an toàn trong thời gian ngắn nhất...
Có thể nói, trong tương lai, học máy sẽ phủ khắp mọi lĩnh vực trong cuộc sống, miễn là nơi đó có dữ liệu. Nhờ có học máy, thời tiết sẽ được dự báo chính xác hơn. Trong y tế, thông tin bệnh nhân được quản lý sâu tới nguồn gene và hỗ trợ bác sĩ lên phác đồ điều trị phù hợp. Các kênh đầu tư sẽ có thêm nhiều gợi ý chính xác hơn. "Biết đâu khi sẽ chẳng còn xa nữa, ô tô tự lái có thể thong thả chạy quanh hồ Gươm và dừng lại ở Lý Thái Tổ...", Mentor Trần Quốc Tuấn nói.
Tuy nhiên, để máy tính học tốt, nó phải có khả năng xử lý dữ liệu tốt hơn: dữ liệu đến từ việc giao tiếp với người và giao tiếp giữa những loại thiết bị máy móc với nhau. Khi máy giao tiếp với người, nó phải tiếp nhận được dữ liệu mà người cung cấp cho máy, hiểu những thông tin mà con người truyền đạt cho nó.
Cái cốt lõi của học máy cũng chính là vấn đề suy diễn từ dữ liệu. So với thống kê cổ điển, điều mới là máy phải thực hiện một cách hiệu quả các phép suy diễn và học tập từ dữ liệu bằng các thuật toán hiệu quả và cơ sở quản lý dữ liệu đồ sộ của máy tính. Do đó học máy cũng được xem là một trong những lĩnh vực tiên phong của thống kê hiện đại nói riêng và khao học dữ liệu nói chung.
Với sự phát triển của dữ liệu lớn và các thuật toán xử lý, khi khai thác hết tiềm năng của học máy, con người sẽ có sự hỗ trợ hiệu quả từ máy móc để phân tích và xử lý những thông tin có thể là quá tải với bộ não của con người.
Các kỹ năng để trở thành nhà khoa học dữ liệu
Một nhà khoa học dữ liệu cần có kỹ năng tư duy phản biện, thống kê, lập trình, kiến thức về Học máy, Học sâu và AI...
Nhà khoa học dữ liệu là người thực hiện thu thập, phân tích dữ liệu và đưa ra kết quả phân tích kèm theo những giải thích về tính ứng dụng cho kết quả trong thực tế. Kết quả phân tích được sử dụng để đưa ra quyết định quan trọng cho doanh nghiệp, có thể ảnh hưởng đến sự tăng trưởng và giúp giành lợi thế cạnh tranh trên thị trường.
Trước khi xem xét những kỹ năng cần thiết của một nhà khoa học dữ liệu, chúng ta cần biết chính xác một nhà khoa học dữ liệu làm gì, vai trò và trách nhiệm của họ như thế nào.
Nhà khoa học dữ liệu sẽ thực hiện:
1. Xác định chính xác bộ dữ liệu và các biến liên quan
2. Xác định các vấn đề phân tích dữ liệu thách thức nhất
3. Thu thập và tập hợp dữ liệu có cấu trúc và không cấu trúc từ các nguồn khác nhau.
4. Làm sạch và xác nhận dữ liệu đảm bảo tính chính xác, đầy đủ và thống nhất
5. Xây dựng và áp dụng các mô hình và thuật toán để khai thác dữ liệu
6. Phân tích dữ liệu để tìm ra các mẫu hình (pattern) và xu hướng
7. Giải thích dữ liệu để tìm giải pháp
8. Truyền đạt kết quả cho các bên liên quan bằng cách sử dụng các công cụ trực quan hóa
Các nhóm kỹ năng cần thiết của một nhà khoa học dữ liệu bao gồm Phân tích (Analytics), Lập trình (Programming), và Kiến thức chuyên ngành (Domain Knowledge).
Nhóm kỹ năng Phân tích gồm các kỹ năng về thống kê, tính toán, tư duy phản biện, kỹ năng trực quan hóa dữ liệu, sắp xếp dữ liệu và làm việc với dữ liệu phi cấu trúc.
Nhóm kỹ năng lập trình bao gồm các kỹ năng về lập trình (sử dụng một hoặc nhiều ngôn ngữ như Python, R, SAS và Scala), kiến thức về trí tuệ nhân tạo, học máy, học sâu, và kinh nghiệm về SQL.

Được Harvard Business Review đánh giá là nghề hấp dẫn nhất trong thế kỷ 21, Nhà khoa học dữ liệu (Data scientist) là nghề nghiệp mà nhiều bạn trẻ đang quan tâm và muốn theo học.
Nhóm kỹ năng mà hầu hết nhà khoa học dữ liệu trẻ gặp khó khăn chính là nhóm kiến thức chuyên ngành. Tất cả kết quả phân tích phải được áp dụng trong thực tế. Việc hiểu càng sâu các kiến thức chuyên ngành sẽ giúp nhà khoa học dữ liệu có tư duy sâu, rộng hơn về các mô hình, các phân tích mà họ sẽ nghĩ ra để giải các bài toán của doanh nghiệp, giúp cho mô hình và phân tích của họ tổng quát nhất và chính xác.
Ba nhóm kỹ năng nêu trên là ở mức tổng quát. Dưới đây là những kỹ năng chi tiết mà một nhà khoa học dữ liệu cần có:
Tư duy phản biện
Tư duy phản biện là sử dụng các phân tích, khảo sát và ước lượng khách quan trước một vấn đề để đưa ra phán đoán chính đáng và có tính khả thi. Để có tư duy phản biện, nhà khoa học dữ liệu cần giữ thái độ "không bao giờ chấp nhận câu trả lời ban đầu là câu trả lời cuối cùng" - luôn đặt câu hỏi về mọi điều nghe thấy và đọc được, tập trung vào khía cạnh quan trọng của vấn đề và bỏ qua các chi tiết không liên quan.
Thống kê
Thống kê sẽ giúp các nhà khoa học dữ liệu có cái nhìn tổng quan về dữ liệu trong bước tiền xử lý dữ liệu, cũng như giúp họ thể hiện tốt các kết quả nghiên cứu cho đồng nghiệp và khách hàng. Các công cụ hỗ trợ trong thống kê thường là kiểm định thống kê, các hàm phân bố và ước lượng hợp lý cực đại. Khi hiểu rõ những công cụ, khái niệm này, nhà khoa học dữ liệu sẽ lựa chọn được kỹ thuật tốt nhất có thể áp dụng cho vấn đề của họ. Với số liệu thống kê, bạn có thể giúp các bên liên quan đưa ra quyết định, thiết kế và đánh giá các thử nghiệm.
Kỹ năng lập trình
Nhà khoa học dữ liệu phải thành thạo kỹ năng về việc sử dụng các công cụ lập trình như Python, R và ngôn ngữ truy vấn cơ sở dữ liệu như SQL, trên cả hai khía cạnh tính toán và thống kê.

Thống kê sẽ giúp các nhà khoa học dữ liệu có cái nhìn tổng quan về dữ liệu trong bước tiền xử lý dữ liệu, cũng như giúp họ thể hiện tốt các kết quả nghiên cứu cho đồng nghiệp và khách hàng.
Ba nhóm kỹ năng nêu trên là ở mức tổng quát. Dưới đây là những kỹ năng chi tiết mà một nhà khoa học dữ liệu cần có:
Tư duy phản biện
Tư duy phản biện là sử dụng các phân tích, khảo sát và ước lượng khách quan trước một vấn đề để đưa ra phán đoán chính đáng và có tính khả thi. Để có tư duy phản biện, nhà khoa học dữ liệu cần giữ thái độ "không bao giờ chấp nhận câu trả lời ban đầu là câu trả lời cuối cùng" - luôn đặt câu hỏi về mọi điều nghe thấy và đọc được, tập trung vào khía cạnh quan trọng của vấn đề và bỏ qua các chi tiết không liên quan.
Thống kê
Thống kê sẽ giúp các nhà khoa học dữ liệu có cái nhìn tổng quan về dữ liệu trong bước tiền xử lý dữ liệu, cũng như giúp họ thể hiện tốt các kết quả nghiên cứu cho đồng nghiệp và khách hàng. Các công cụ hỗ trợ trong thống kê thường là kiểm định thống kê, các hàm phân bố và ước lượng hợp lý cực đại. Khi hiểu rõ những công cụ, khái niệm này, nhà khoa học dữ liệu sẽ lựa chọn được kỹ thuật tốt nhất có thể áp dụng cho vấn đề của họ. Với số liệu thống kê, bạn có thể giúp các bên liên quan đưa ra quyết định, thiết kế và đánh giá các thử nghiệm.
Kỹ năng lập trình
Nhà khoa học dữ liệu phải thành thạo kỹ năng về việc sử dụng các công cụ lập trình như Python, R và ngôn ngữ truy vấn cơ sở dữ liệu như SQL, trên cả hai khía cạnh tính toán và thống kê.

Thống kê sẽ giúp các nhà khoa học dữ liệu có cái nhìn tổng quan về dữ liệu trong bước tiền xử lý dữ liệu, cũng như giúp họ thể hiện tốt các kết quả nghiên cứu cho đồng nghiệp và khách hàng.
Kiến thức về Học máy, Học sâu và AI
Học máy (Machine learning) là một lĩnh vực của Trí tuệ nhân tạo, sử dụng các phương pháp thống kê để giúp máy tính có khả năng học từ dữ liệu. Với Học máy, công nghệ xe tự lái, nhận dạng giọng nói, tìm kiếm hiệu quả trên web đều có thể thực hiện được. Học sâu là một ngành của học máy trong đó dữ liệu được biến đổi qua nhiều phép biến đổi phi tuyến trước khi thu được kết quả đầu ra. AI dựa trên ý tưởng về khả năng của máy tính hoặc chương trình máy tính để suy nghĩ, hiểu và học hỏi như con người. Khoa học dữ liệu có sự giao thoa với AI nhưng không phải là một lĩnh vực của AI.
Kỹ năng làm việc với dữ liệu phi cấu trúc
Dữ liệu phi cấu trúc là thông tin không có mô hình dữ liệu được xác định trước hoặc không được tổ chức theo cách được xác định trước. Thông tin phi cấu trúc thường nặng về văn bản, nhưng cũng có thể chứa dữ liệu như ngày, số và sự kiện. Kỹ năng làm việc với dữ liệu phi cấu trúc là một điểm cộng đối với các nhà khoa học dữ liệu.
Kỹ năng tiền xử lý dữ liệu
Rất nhiều dữ liệu bị lộn xộn. Các giá trị có thể bị thiếu, có thể có định dạng không nhất quán. Nhà khoa học dữ liệu sẽ cần phải dọn dẹp và sắp xếp lại dữ liệu.
Kỹ năng trực quan hóa dữ liệu
Trực quan hóa dữ liệu là biểu diễn đồ họa của dữ liệu để truyền đạt mối quan hệ giữa đặc trưng của dữ liệu. Đây là một phần thiết yếu của khoa học dữ liệu, vì nó cho phép nhà khoa học dữ liệu mô tả và truyền đạt kết quả của họ tới đồng nghiệp và khách hàng. Nhà khoa học dữ liệu nên thành thạo một trong các thư viện như Matplotlib, ggplot, d3.js, hoặc Tableau.
Kỹ năng thuyết trình
Nhà khoa học dữ liệu cần có kỹ năng sử dụng dữ liệu để giao tiếp hiệu quả với các bên liên quan. Họ là những người đứng ở giao điểm của kinh doanh, công nghệ và dữ liệu. Các phẩm chất như tài hùng biện và khả năng kể chuyện giúp họ truyền tải những thông tin kỹ thuật phức tạp thành thứ đơn giản, dễ hiểu và chính xác đến đồng nghiệp hay những nhà lãnh đạo doanh nghiệp.
Để trở thành nhà khoa học dữ liệu cần nhiều thời gian để học tập và rèn luyện. Bạn có thể dành 6 – 8 tuần học tập và rèn luyện liên tục để nắm được những kiến thức cơ bản về ngành khoa học dữ liệu và ứng dụng. Để đạt tiến độ này, người học cần lựa chọn khóa học với nội dung đào tạo phù hợp, có giảng viên, mentor nhiều kinh nghiệm thực tế về khoa học dữ liệu.
Khóa đào tạo Data Science của FUNiX là một ví dụ. Mentor của khóa học là những nhà khoa học dữ liệu hàng đầu của tập đoàn FPT, Đại học Quốc gia Hà Nội và các doanh nghiệp đang khai thác các công nghệ mới của khoa học dữ liệu trong kinh doanh. Sau thời gian học, học viên đủ khả năng và có cơ hội tham gia những dự án khoa học dữ liệu tại các công ty và tập đoàn lớn.
Học máy (Machine learning) là một lĩnh vực của Trí tuệ nhân tạo, sử dụng các phương pháp thống kê để giúp máy tính có khả năng học từ dữ liệu. Với Học máy, công nghệ xe tự lái, nhận dạng giọng nói, tìm kiếm hiệu quả trên web đều có thể thực hiện được. Học sâu là một ngành của học máy trong đó dữ liệu được biến đổi qua nhiều phép biến đổi phi tuyến trước khi thu được kết quả đầu ra. AI dựa trên ý tưởng về khả năng của máy tính hoặc chương trình máy tính để suy nghĩ, hiểu và học hỏi như con người. Khoa học dữ liệu có sự giao thoa với AI nhưng không phải là một lĩnh vực của AI.
Kỹ năng làm việc với dữ liệu phi cấu trúc
Dữ liệu phi cấu trúc là thông tin không có mô hình dữ liệu được xác định trước hoặc không được tổ chức theo cách được xác định trước. Thông tin phi cấu trúc thường nặng về văn bản, nhưng cũng có thể chứa dữ liệu như ngày, số và sự kiện. Kỹ năng làm việc với dữ liệu phi cấu trúc là một điểm cộng đối với các nhà khoa học dữ liệu.
Kỹ năng tiền xử lý dữ liệu
Rất nhiều dữ liệu bị lộn xộn. Các giá trị có thể bị thiếu, có thể có định dạng không nhất quán. Nhà khoa học dữ liệu sẽ cần phải dọn dẹp và sắp xếp lại dữ liệu.
Kỹ năng trực quan hóa dữ liệu
Trực quan hóa dữ liệu là biểu diễn đồ họa của dữ liệu để truyền đạt mối quan hệ giữa đặc trưng của dữ liệu. Đây là một phần thiết yếu của khoa học dữ liệu, vì nó cho phép nhà khoa học dữ liệu mô tả và truyền đạt kết quả của họ tới đồng nghiệp và khách hàng. Nhà khoa học dữ liệu nên thành thạo một trong các thư viện như Matplotlib, ggplot, d3.js, hoặc Tableau.
Kỹ năng thuyết trình
Nhà khoa học dữ liệu cần có kỹ năng sử dụng dữ liệu để giao tiếp hiệu quả với các bên liên quan. Họ là những người đứng ở giao điểm của kinh doanh, công nghệ và dữ liệu. Các phẩm chất như tài hùng biện và khả năng kể chuyện giúp họ truyền tải những thông tin kỹ thuật phức tạp thành thứ đơn giản, dễ hiểu và chính xác đến đồng nghiệp hay những nhà lãnh đạo doanh nghiệp.
Để trở thành nhà khoa học dữ liệu cần nhiều thời gian để học tập và rèn luyện. Bạn có thể dành 6 – 8 tuần học tập và rèn luyện liên tục để nắm được những kiến thức cơ bản về ngành khoa học dữ liệu và ứng dụng. Để đạt tiến độ này, người học cần lựa chọn khóa học với nội dung đào tạo phù hợp, có giảng viên, mentor nhiều kinh nghiệm thực tế về khoa học dữ liệu.
Khóa đào tạo Data Science của FUNiX là một ví dụ. Mentor của khóa học là những nhà khoa học dữ liệu hàng đầu của tập đoàn FPT, Đại học Quốc gia Hà Nội và các doanh nghiệp đang khai thác các công nghệ mới của khoa học dữ liệu trong kinh doanh. Sau thời gian học, học viên đủ khả năng và có cơ hội tham gia những dự án khoa học dữ liệu tại các công ty và tập đoàn lớn.
Nhật Anh tổng hợp (theo VnExpress.net)
Tags
Bài viết cùng chuyên mục
- Việt Nam có thuốc y học cổ truyền đầu tiên điều trị Covid-19
- Ngày Sở hữu trí tuệ thế giới 2023: Thúc đẩy đổi mới sáng tạo
- Na Uy mở đường hầm dài nhất thế giới cho xe đạp
- Ngày mai có thể quan sát nhật thực lai hiếm gặp
- Phó giáo sư Việt làm hệ thống sạc không dây cho ôtô điện
- Thủ tướng: 'Tập trung nhân lực cho công nghệ chip, vi mạch là hướng đi đúng'
- Tuổi Trái Đất được tính như thế nào?
- Ngoại trưởng Mỹ xem trình diễn robot tại Đại học Bách khoa Hà Nội
- Vì sao khi huấn luyện mô hình ChatGPT cần tới 700.000 lít nước?
- Ảnh chụp chưa từng có về 'tinh vân con cua'
Đăng nhập để gửi bình luận
Bình luận